Preprints
* = equal contribution
* = equal contribution
Mercy Asiedu*, Iskandar Haykel*, Awa Dieng*, Kerrie Kauer, Tousif Ahmed, Florence Ofori, Charisma Chan, Stephen Pfohl, Negar Rostamzadeh, Katherine Heller
preprint, arxiv2024
Abstract: Artificial Intelligence (AI) for health has the potential to significantly change and improve healthcare. However in most African countries, identifying culturally and contextually attuned approaches for deploying these solutions is not well understood. To bridge this gap, we conduct a qualitative study to investigate the best practices, fairness indicators, and potential biases to mitigate when deploying AI for health in African countries, as well as explore opportunities where artificial intelligence could make a positive impact in health. We used a mixed methods approach combining in-depth interviews (IDIs) and surveys. We conduct 1.5-2 hour long IDIs with 50 experts in health, policy, and AI across 17 countries, and through an inductive approach we conduct a qualitative thematic analysis on expert IDI responses. We administer a blinded 30-minute survey with case studies to 672 general population participants across 5 countries in Africa and analyze responses on quantitative scales, statistically comparing responses by country, age, gender, and level of familiarity with AI. We thematically summarize open-ended responses from surveys. Our results find generally positive attitudes, high levels of trust, accompanied by moderate levels of concern among general population participants for AI usage for health in Africa. This contrasts with expert responses, where major themes revolved around trust/mistrust, ethical concerns, and systemic barriers to integration, among others. This work presents the first-of-its-kind qualitative research study of the potential of AI for health in Africa from an algorithmic fairness angle, with perspectives from both experts and the general population. We hope that this work guides policymakers and drives home the need for further research and the inclusion of general population perspectives in decision-making around AI usage.
Contextual Evaluation of Large Language Models for Classifying Tropical and Infectious Diseases
Mercy Asiedu, Nenad Tomasev, Chintan Ghate, Tiya Tiyasirichokchai, Awa Dieng, Oluwatosin Akande, Geoffrey Siwo, Steve Adudans, Sylvanus Aitkins, Odianosen Ehiakhamen, Eric Ndombi, Katherine Heller
preprint, arxiv2024
Abstract: While large language models (LLMs) have shown promise for medical question answering, there is limited work focused on tropical and infectious disease-specific exploration. We build on an opensource tropical and infectious diseases (TRINDs) dataset, expanding it to include demographic and semantic clinical and consumer augmentations yielding 11000+ prompts. We evaluate LLM performance on these, comparing generalist and medical LLMs, as well as LLM outcomes to human experts. We demonstrate through systematic experimentation, the benefit of contextual information such as demographics, location, gender, risk factors for optimal LLM response. Finally we develop a prototype of TRINDs-LM, a research tool that provides a playground to navigate how context impacts LLM outputs for health.
* = equal contribution
The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism, AI, and Health in Africa
Mercy Asiedu*, Awa Dieng*, Iskandar Haykel, Negar Rostamzadeh, Stephen Pfohl, Chirag Nagpal, Maria Nagawa, Abigail Oppong, Sanmi Koyejo, Katherine Heller
EAAMO 2024
Abstract: With growing application of machine learning (ML) technologies in healthcare, there have been calls for developing techniques to understand and mitigate biases these systems may exhibit. Fairness considerations in the development of ML-based solutions for health have particular implications for Africa, which already faces inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose axes of disparities for fairness consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 672 general population study participants and 30 experts in ML, health, and policy focused on Africa to obtain corroborative evidence on the proposed axes of disparities. Our analysis focuses on colonialism as the attribute of interest and examines the interplay between artificial intelligence (AI), health, and colonialism. Among the pre-identified attributes, we found that colonial history, country of origin, and national income level were specific axes of disparities that participants believed would cause an AI system to be biased. However, there was also divergence of opinion between experts and general population participants. Whereas experts generally expressed a shared view about the relevance of colonial history for the development and implementation of AI technologies in Africa, the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism. Based on these findings, we provide practical recommendations for developing fairness-aware ML solutions for health in Africa.
A toolbox for surfacing health equity harms and biases in large language models
Stephen R Pfohl, Heather Cole-Lewis, Rory Sayres, Darlene Neal, Mercy Asiedu, Awa Dieng, Nenad Tomasev, Qazi Mamunur Rashid, Shekoofeh Azizi, Negar Rostamzadeh, Liam G McCoy, Leo Anthony Celi, Yun Liu, Mike Schaekermann, Alanna Walton, Alicia Parrish, Chirag Nagpal, Preeti Singh, Akeiylah Dewitt, Philip Mansfield, Sushant Prakash, Katherine Heller, Alan Karthikesalingam, Christopher Semturs, Joelle Barral, Greg Corrado, Yossi Matias, Jamila Smith-Loud, Ivor Horn, Karan Singhal
Nature Medicine 2024
Abstract: Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities. Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity. We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions and conduct a large-scale empirical case study with the Med-PaLM 2 LLM. Our contributions include a multifactorial framework for human assessment of LLM-generated answers for biases and EquityMedQA, a collection of seven datasets enriched for adversarial queries. Both our human assessment framework and our dataset design process are grounded in an iterative participatory approach and review of Med-PaLM 2 answers. Through our empirical study, we find that our approach surfaces biases that may be missed by narrower evaluation approaches. Our experience underscores the importance of using diverse assessment methodologies and involving raters of varying backgrounds and expertise. While our approach is not sufficient to holistically assess whether the deployment of an artificial intelligence (AI) system promotes equitable health outcomes, we hope that it can be leveraged and built upon toward a shared goal of LLMs that promote accessible and equitable healthcare.
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings
Jessica Schrouff, Natalie Harris, Sanmi Koyejo, Ibrahim M Alabdulmohsin, Eva Schnider, Krista Opsahl-Ong, Alexander Brown, Subhrajit Roy, Diana Mincu, Christina Chen, Awa Dieng, Yuan Liu, Vivek Natarajan, Alan Karthikesalingam, Katherine A Heller, Silvia Chiappa, Alexander D'Amour
NeurIPS 2022
Abstract: Diagnosing and mitigating changes in model fairness under distribution shift is an important component of the safe deployment of machine learning in healthcare settings. Importantly, the success of any mitigation strategy strongly depends on the\textit {structure} of the shift. Despite this, there has been little discussion of how to empirically assess the structure of a distribution shift that one is encountering in practice. In this work, we adopt a causal framing to motivate conditional independence tests as a key tool for characterizing distribution shifts. Using our approach in two medical applications, we show that this knowledge can help diagnose failures of fairness transfer, including cases where real-world shifts are more complex than is often assumed in the literature. Based on these results, we discuss potential remedies at each step of the machine learning pipeline.
Causal inference methods for combining randomized trials and observational studies: a review
Bénédicte Colnet, Imke Mayer, Guanhua Chen, Awa Dieng, Ruohong Li, Gaël Varoquaux, Jean-Philippe Vert, Julie Josse, Shu Yang
Statistical science 2024
Abstract: With increasing data availability, treatment causal effects can be evaluated across different dataset, both randomized trials and observational studies. Randomized trials isolate the effect of the treatment from that of unwanted (confounding) co-occuring effects. But they may be applied to limited populations, and thus lack external validity. On the opposite, large observational samples are often more representative of the target population but can conflate confounding effects with the treatment of interest. In this paper, we review the growing literature on methods for causal inference on combined randomized trial and observational studies, striving for the best of both worlds. We first discuss identification and estimation methods that improve generalizability of randomized controlled trials (RCTs) using the representativeness of observational data. Classical estimators include weighting, difference between conditional outcome models, and double robust estimators. We then discuss methods that combine RCTs and observational data to improve the (conditional) average treatment effect estimation, handling possible unmeasured confounding in the observational data. We also connect and contrast works developed in both the potential outcomes framework and the structural causal models framework. Finally, we compare the main methods using a simulation study and real world data to analyse the effect of tranexamic acid on the mortality rate in major trauma patients. Code to implement many of the methods is provided.
Interpretable Almost-Exact Matching for Causal Inference
Awa Dieng, Yameng Liu, Sudeepa Roy, Cynthia Rudin, Alex Volfovsky
AISTATS 2019
Abstract: Matching methods are heavily used in the social and health sciences due to their interpretability. We aim to create the highest possible quality of treatment-control matches for categorical data in the potential outcomes framework. The method proposed in this work aims to match units on a weighted Hamming distance, taking into account the relative importance of the covariates; the algorithm aims to match units on as many relevant variables as possible. To do this, the algorithm creates a hierarchy of covariate combinations on which to match (similar to downward closure), in the process solving an optimization problem for each unit in order to construct the optimal matches. The algorithm uses a single dynamic program to solve all of the units’ optimization problems simultaneously. Notable advantages of our method over existing matching procedures are its high-quality interpretable matches, versatility in handling different data distributions that may have irrelevant variables, and ability to handle missing data by matching on as many available covariates as possible.
Algorithmic Fairness through the Lens of Causality and Privacy (AFCP) 2022
Awa Dieng, Miriam Rateike, Golnoosh Farnadi, Ferdinando Fioretto, Matt Kusner, Jessica Schrouff
Workshop Report, PMLR 2023
Algorithmic Fairness through the Lens of Causality and Robustness (AFCR) 2021
Jessica Schrouff, Awa Dieng, Miriam Rateike, Kweku Kwegyir-Aggrey, Golnoosh Farnadi
Workshop Report, PMLR 2022